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1. Introduction and motivation

The existence of low-energy effective field theory descriptions of coincident D-branes in

string theory in terms of nonabelian gauge theories has led to a deeper understanding of

the dynamics of these nonperturbative objects. A similar approximation modelling the

dynamics of multiple M2- and M5-branes in M-theory would also be greatly beneficial

and could lead to a clearer understanding of the fundamental degrees of freedom here.

However, the construction of interacting effective field theories which explicitly realise all

the symmetries expected for M-theory branes has proved elusive.

This is perhaps not surprising given the analyses based on gravitational thermody-

namics [1] and absorption cross-sections [2] that suggest the entropy of a large number of

N coincident branes should obey a power law Nk, with k = 2, 3
2 , 3 for D-, M2-, M5-branes,

respectively. Thus a supersymmetric Yang-Mills description of D-branes involving N ×N

matrices is natural while the appropriate gauge-theoretic description of multiple branes

in M-theory is less clear. Based on the foundational work by Bagger and Lambert [3]

and Gustavsson [4], a superconformal field theory in three-dimensional Minkowski space-

time was constructed in [5] as a model of multiple M2-branes in M-theory. The theory is
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maximally supersymmetric and scale-invariant with an explicit so(8) R-symmetry. This is

consistent with the full osp(8|4) superconformal symmetry of the near-horizon geometry of

M2-branes in eleven-dimensional supergravity. The Lagrangian and its equations of mo-

tion nicely encapsulate several other features expected [6, 7] in a low-energy description of

multiple M2-branes. These encouraging properties have prompted a great deal of interest

in the Bagger-Lambert theory [8 – 33].

A novel feature of the Bagger-Lambert theory is that it has a local gauge symmetry

which is not based on a Lie algebra, but rather on a Lie 3-algebra. The analogue of the Lie

bracket [−,−] here being the 3-bracket [−,−,−], an alternating trilinear map on a vector

space V , which satisfies a natural generalisation of the Jacobi identity (sometimes referred

to as the fundamental identity). The dynamical fields in the Bagger-Lambert model are

taken to be valued in V and consist of eight real bosonic scalars and a fermionic spinor in

three dimensions which transforms as a chiral spinor under the so(8) R-symmetry. There

is also a non-dynamical gauge field which takes values in a Lie subalgebra of gl(V ). The

on-shell closure of the supersymmetry transformations for these fields follows from the

fundamental identity.

To obtain the correct equations of motion from a Lagrangian that is invariant under

all the aforementioned symmetries seems to require the Lie 3-algebra to admit an invariant

inner product. In this paper we will consider only Lie 3-algebras with a nondegenerate inner

product. The signature of this inner product determines the relative signs of the kinetic

terms for the scalar fields in the Bagger-Lambert Lagrangian. As with ordinary gauge

theory, taking this metric to be positive-definite would avoid potential issues concerning

lack of unitarity in the quantum theory. The problem is that there are very few euclidean

metric Lie 3-algebras. Indeed, as shown in [34] (see also [19, 20]), they can always be

written as the direct sum of abelian Lie 3-algebras plus multiple copies of the unique simple

euclidean Lie 3-algebra considered by Bagger and Lambert in their original construction.

Therefore this assumption is too restrictive.

It should be noted that one could still construct the Lagrangian and gauge-invariant op-

erators for the Bagger-Lambert theory for a Lie 3-algebra with a degenerate inner product.

However, one could not obtain from such a Lagrangian the equations of motion for the fields

that couple only to the degenerate components of this metric. Nonetheless, in certain cases

it is possible to write down an auxiliary Lagrangian that is decoupled from the one involving

the nondegenerate components of the inner product to account for the missing equations of

motion (see e.g. [33] where the metric is degenerate in just one direction). The hope with

this construction would be to evade the no-go theorem noted above and perhaps find Lie

3-algebras with invariant degenerate metrics whose nondegenerate components are positive-

definite. A problem with such Lie 3-algebras is that they do not seem to allow any new in-

teractions in the Bagger-Lambert Lagrangian. As shown in Remark 1, the canonical 4-form

in (2.7) that appears in all the interaction terms in the Lagrangian can have no ‘legs’ in the

degenerate directions. Hence the Lagrangian can always be written in terms of the quotient

metric Lie 3-algebra corresponding to the nondegenerate directions. Since this quotient Lie

3-algebra is nondegenerate, the problem can be reduced to the nondegenerate case.

Of course, it is by no means guaranteed that the low-energy effective theory on multiple

– 2 –



J
H
E
P
0
7
(
2
0
0
8
)
1
1
1

M2-branes should have a Lagrangian description and Gran et al [16] have considered,

purely at the level of its classical equations of motion, the Bagger-Lambert theory for

a class of Lie 3-algebras (defined by a Lie algebra of one dimension lower) that do not

admit a metric. Following the novel Higgs mechanism technique introduced by Mukhi

and Papageorgakis [9], they are able to reduce to the correct equations of motion for the

supersymmetric Yang-Mills description of multiple D2-branes with arbitrary gauge algebra

corresponding to the choice of Lie algebra defining the Lie 3-algebra.

An alternative approach considered recently [23 – 25] is to investigate the Bagger-

Lambert theory for a class of Lie 3-algebras (defined by a euclidean Lie algebra in two

dimensions lower) admitting an inner product of lorentzian signature. It is unclear at

present whether the Bagger-Lambert theory associated with such 3-algebras is really uni-

tary at the quantum level, but there are some encouraging signs noted in the aforementioned

references, based on the specific structure of the interactions in the Bagger-Lambert model

and the way the ghost-like fields that might give rise to negative-norm states seem to de-

couple from the physical Hilbert space. By giving a vacuum expectation value to one of the

scalar fields in a null direction of the Lie 3-algebra and taking the Lie algebra to be su(N),

the correct reduction of the Bagger-Lambert to supersymmetric Yang-Mills effective La-

grangian for N D2-branes is obtained in [23, 25]. Moreover, in [24] it is suggested that the

moduli space of this Bagger-Lambert theory has a branch that corresponds to the moduli

space (R8)N/SN of N M2-branes in Minkowski spacetime. This is to be contrasted with the

moduli space of the Bagger-Lambert theory associated with the unique simple euclidean

Lie 3-algebra used in the original construction of Bagger and Lambert. The semi-classical

moduli space (R8 ×R8)/D2k for this theory was obtained in [14] for k = 1, 2 and in [15] for

general k, where the integer k in the dihedral group D2k of order 4k here corresponds to the

value of the quantised level for the Chern-Simons term in the Bagger-Lambert Lagrangian.

For k > 2, the M-theoretic interpretation of the moduli space is still not entirely clear,

but is thought to describe two M2-branes on a so-called M-fold: essentially a Z2k quotient

which acts on both the background spacetime and the M2-branes.

Motivated by the recent results in [23 – 25], and by the tractability of the problem, we

set ourselves the task of classifying the lorentzian metric Lie 3-algebras and studying in

detail the corresponding moduli space of classical vacua. This paper contains our results

and is organised as follows. In section 2 we study the structure of metric Lie 3-algebras.

The strong analogy with the case of metric Lie algebras turns out to be very fruitful and

after introducing the necessary, yet standard, algebraic concepts, we are able to classify the

lorentzian 3-algebras in section 3. The main result in this section is Theorem 2, which says

that the indecomposable ones are either one-dimensional, simple or belong to a class whose

objects are in one-to-one correspondence with the compact real forms of metric semisimple

Lie algebras. These latter ones are precisely the class of lorentzian metric Lie 3-algebras

already discovered in [23 – 25]!

In section 4 we investigate the structure of the moduli space of maximally supersym-

metric vacua of the Bagger-Lambert theory for indecomposable lorentzian Lie 3-algebras.

This adds to and complements the preliminary analysis in [24]. This moduli space can be

described as the quotient by residual gauge symmetries of a certain variety in the space
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of constant scalar fields in the Bagger-Lambert theory. We perform a detailed calculation

of the residual symmetries of the vacuum which correspond to automorphisms of the Lie

3-algebra. To some extent, we are able to factorise the moduli space and find it to have

two distinct branches (which we label degenerate and nondegenerate), according to whether

one of the scalar fields in a null direction of the Lie 3-algebra is zero or not (in agreement

with [24], whose abelian branch corresponds to our nondegenerate branch).

The nondegenerate branch has the simpler structure and is of the form

Mnondeg = R16 × R8r/W ,

for a compact semisimple Lie algebra g of rank r whose Weyl group is W. The second

factor can be identified with (the strong coupling limit of) the classical moduli space of

N=8 super Yang-Mills theory with gauge algebra g in three-dimensional Minkowski space

(see e.g. [35]). The scalars in the two null directions of the 3-algebra, spanning R16,

are related to the extra u(1) degree of freedom and Yang-Mills coupling in the D2-brane

reduction described in [23].

The degenerate branch has a much more intricate structure and is defined by subspaces

p ⊂ g satisfying [p, p] = p⊥, i.e., the Lie bracket on p spans the orthogonal complement p⊥

of p ⊂ g. We find a large class of such subspaces p that are in one-to-one correspondence

with compact riemannian symmetric spaces, and have maximal dimension 1
2 (dim g+rank g).

After properly performing the quotient, it turns out the dimension of the degenerate branch

can be very different for different choices of symmetric spaces. It is often of larger dimension

than the nondegenerate branch. It would be very interesting to understand what the M-

theoretic interpretation of this degenerate branch is.

We end by exploring numerically the asymptotic properties of these branches as one

one takes the dimension of the Lie algebra g to be large and we exhibit a large class of

models with the infamous N3/2 scaling at large N .

2. Metric Lie 3-algebras

In this section we study the structure of metric Lie 3-algebras. Lie n-algebras (for n > 2)

were introduced by Filippov [36] and studied in a number of subsequent papers by Filippov

and other authors. Metric Lie n-algebras (for n > 2) seem to have been considered for the

first time in [37], albeit tangentially.

2.1 Basic definitions

Let V be a finite-dimensional real vector space. Recall that a Lie algebra structure on V is

a linear map [, ] : Λ2V → V obeying the Jacobi identity. There are many equivalent ways

to think of the Jacobi identity. One such way is to say that the endomorphisms adx of V for

all x ∈ V , defined by adx(z) = [x, z], are a derivation over the bracket, or in other words,

[x, [y, z]] = [[x, y], z] + [y, [x, z]] , (2.1)

for all x, y, z ∈ V . This formulation admits a straight-forward generalisation to n-ary

brackets. In this note we will be interested in the case where n = 3. Thus we define
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a Lie 3-algebra (also known as a Filippov 3-algebra) structure on V to be a linear map

Φ : Λ3V → V , often written simply as a 3-bracket Φ(x, y, y) = [x, y, z], such that for all

x, y ∈ V , the endomorphism adx,y : V → V , defined by

adx,y(z) = − ady,x(z) = [x, y, z] , (2.2)

is a derivation over Φ. In other words, we demand that for all x, y, z1, z2, z3 ∈ V ,

[x, y, [z1, z2, z3]] = [[x, y, z1], z2, z3] + [z1, [x, y, z2], z3] + [z1, z2, [x, y, z3]] , (2.3)

which we call the 3-Jacobi identity. An endomorphism δ : V → V is called a derivation of

the Lie 3-algebra if for all x, y, z ∈ V ,

δ[x, y, z] = [δx, y, z] + [x, δy, z] + [x, y, δz] . (2.4)

The 3-Jacobi identity says that for all x, y ∈ V , the endomorphism adx,y is a derivation.

Such derivations are said to be inner. Derivations form a Lie subalgebra of gl(V ) of which

the inner derivations are an ideal.

Now recall that a Lie algebra structure on V is said to be metric, if there is an inner

product (i.e., a nondegenerate symmetric bilinear form) b ∈ S2V ∗ on V , often written

simply as b(x, y) = 〈x, y〉, which is invariant under the action of adx for all x ∈ V ; that is,

〈[x, y], z〉 + 〈y, [x, z]〉 = 0 , (2.5)

for all x, y, z ∈ V . In the same spirit, we say that a Lie 3-algebra structure (V,Φ, b) is metric

if the inner product b is invariant under the inner derivations adx,y for all x, y ∈ V ; that is,

〈[x, y, z], w〉 + 〈z, [x, y,w]〉 = 0 , (2.6)

for all x, y, z, w ∈ V . In other words, the inner derivations adx,y lie in the Lie subalgebra

so(V ) < gl(V ) preserving b. Just like a metric Lie algebra possesses a canonical three-form

Ω ∈ Λ3V ∗, given by Ω(x, y, z) = 〈[x, y], z〉, a metric Lie 3-algebra possesses a canonical

4-form F ∈ Λ4V ∗, defined by

F (x, y, z, w) = 〈[x, y, z], w〉 . (2.7)

Given two metric Lie 3-algebras (V1,Φ1, b1) and (V2,Φ2, b2), we may form their orthog-

onal direct sum (V1 ⊕ V2,Φ1 ⊕ Φ2, b1 ⊕ b2), by declaring that

[x1, x2, y] = 0 and 〈x1, x2〉 = 0 ,

for all xi ∈ Vi and all y ∈ V1 ⊕ V2. The resulting object is again a metric Lie 3-algebra.

A metric Lie 3-algebra is said to be indecomposable if, roughly speaking, it cannot be

written as an orthogonal direct sum of metric Lie 3-algebras (V1⊕V2,Φ1⊕Φ2, b1⊕b2) with

dimVi > 0.

In order to classify the metric Lie 3-algebras, it is clearly enough to classify the inde-

composable ones. In order to do this we will find it convenient to introduce some basic

3-algebraic concepts by analogy with the theory of Lie algebras. Most of these concepts

can be found in the foundational paper of Filippov [36].
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2.2 Some structure theory

Let (V,Φ) be a Lie 3-algebra. A subspace W ⊂ V is a subalgebra, written W < V , if

[W,W,W ] ⊂W , which is a convenient shorthand notation for the following: for all x, y, z ∈

W , [x, y, z] ∈W . We will this shorthand notation without further comment in what follows.

A subalgebra W < V (which could be all of V ) is said to be abelian if [W,W,W ] = 0.

If V,W are Lie 3-algebras, then a linear map φ : V →W is a homomorphism if

φ[x, y, z] = [φ(x), φ(y), φ(z)] ,

for all x, y, z ∈ V . If φ is also a vector space isomorphism, we say that it is an isomorphism

of Lie 3-algebras.

It is clear that the image of a homomorphism is a subalgebra and we expect that the

kernel ought to be an ideal. Indeed, if x ∈ ker φ, then φ[x, y, z] = 0 for all y, z ∈ V .

This suggests the following definition: a subspace I ⊂ V is an ideal, written I ⊳ V , if

[I, V, V ] ⊂ I.

Lemma 1. There is a one-to-one correspondence between ideals and kernels of homomor-

phisms.

Proof. The kernel of a homomorphism is an ideal, by definition. (In fact, this motivated

the definition.) Conversely, if I ⊳ V , then V/I is a Lie 3-algebra with bracket

[x+ I, y + I, z + I] = [x, y, z] + I ,

and the canonical projection V → V/I is a homomorphism with kernel I.

Lemma 2. If I, J are ideals of V then so is their intersection I ∩ J and their linear span

I + J , defined as the smallest vector subspace containing their union I ∪ J .

Proof. Since I ∩ J ⊂ I, [I ∩ J, V, V ] ⊂ I and since I ∩ J ⊂ J , [I ∩ J, V, V ] ⊂ J , hence

[I ∩ J, V, V ] ⊂ I ∩ J . Similarly, [I + J, V, V ] ⊂ [I, V, V ] + [J, V, V ] ⊂ I + J .

An ideal I ⊳ V is minimal if any other ideal J ⊳ V contained in I is either 0 or I.

Dually, an ideal I ⊳ V is maximal if any other ideal J ⊳ V containing I is either I or V .

A Lie 3-algebra is simple if it is not one-dimensional and every ideal I ⊳ V is either 0

or V .

Lemma 3. If I ⊳ V is a maximal ideal, then V/I is simple or one-dimensional.

Proof. Let π : V → V/I denote the natural surjection, suppose that J ⊂ V/I is an

ideal and let let π−1J = {x ∈ V |π(x) ∈ J}. Then π−1J is an ideal of V : π[π−1J, V, V ] =

[J, V/I, V/I] ⊂ J , whence [π−1J, V, V ] ⊂ π−1J . Since I = ker π, I is contained in π−1J ,

but since I is maximal π−1J = I or π−1J = V . In the former case, J = ππ−1J = πI = 0

and in the latter J = ππ−1J = πV = V/I. Hence V/I has no proper ideals.

Simple Lie n-algebras have been classified. In particular, for n=3 we have the following
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Theorem 1 ([38]). A simple real Lie 3-algebra is isomorphic to one of the four-dimensional

Lie 3-algebras defined, relative to a basis ei, by

[ei,ej ,ek] =

4∑

ℓ=1

εijkℓλℓeℓ , (2.8)

for some λℓ, all nonzero.

It is plain to see that simple real Lie 3-algebras admit invariant metrics of any signature:

euclidean, lorentzian or split. Indeed, the Lie 3-algebra in (2.8) leaves invariant the diagonal

metric with entries (1/λ1, 1/λ2, 1/λ3, 1/λ4). One can further change to a basis where

the λi are signs. In particular this shows that up to homothety (i.e., a rescaling of the

inner product) there are unique simple metric Lie 3-algebras with euclidean and lorentzian

signatures, corresponding to choosing λi to be (1, 1, 1, 1) and (−1, 1, 1, 1), respectively. The

euclidean case is the original Lie 3-algebra which was used in appendix A of [5].

The image [V, V, V ] ⊂ V of Φ : Λ3V → V is an ideal called the derived ideal of V .

Another ideal is provided by the centre Z, defined by

Z = {z ∈ V |[z, x, y] = 0, ∀x, y ∈ V } .

In other words, [Z, V, V ] = 0. More generally the centraliser Z(W ) of a subspace W ⊂ V

is defined by

Z(W ) = {z ∈ V |[z,w, y] = 0, ∀w ∈W,y ∈ V } ,

or equivalently [Z(W ),W, V ] = 0 (thus Z(V ) = Z). It follows from the Jacobi identity (2.3)

that Z(W ) is a subalgebra.

From now on let (V,Φ, b) be a metric Lie 3-algebra. IfW ⊂ V is any subspace, we define

W⊥ = {v ∈ V |〈v,w〉 = 0 ,∀w ∈W} .

Notice that (W⊥)⊥ = W . We say that W is nondegenerate, if W ∩ W⊥ = 0, whence

V = W ⊕W⊥; isotropic, if W ⊂W⊥; and coisotropic, if W ⊃W⊥. Of course, in positive-

definite signature, all subspaces are nondegenerate. A metric Lie 3-algebra is said to be

indecomposable if it is not isomorphic to a direct sum of orthogonal ideals or, equivalently,

if it does not possess any proper nondegenerate ideals: for if I ⊳ V is nondegenerate,

V = I ⊕ I⊥ is an orthogonal direct sum of ideals.

The proof of the following lemma is routine.

Lemma 4. Let I ⊳ V be a coisotropic ideal of a metric Lie 3-algebra. Then I/I⊥ is a

metric Lie 3-algebra.

Lemma 5. Let V be a metric Lie 3-algebra. Then the centre is the orthogonal subspace to

the derived ideal; that is, [V, V, V ] = Z⊥.

Proof. Let z ∈ Z, then for all x, y,w ∈ V , 0 = 〈[x, y, z], w〉 = −〈[x, y,w], z〉, whence

z ∈ [V, V, V ]⊥ and Z ⊂ [V, V, V ]⊥. Conversely, let z ∈ [V, V, V ]⊥. This means that for all

x, y,w ∈ V ,

0 = 〈z, [x, y,w]〉 = −〈[x, y, z], w〉 ,
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which implies that [x, y, z] = 0 for all x, y ∈ V and hence z ∈ Z. In other words,

[V, V, V ]⊥ ⊂ Z.

Proposition 1. Let V be a metric Lie 3-algebra and I ⊳ V be an ideal. Then

1. I⊥ ⊳ V is also an ideal;

2. I⊥ ⊳ Z(I); and

3. if I is minimal then I⊥ is maximal.

Proof. 1. For all x, y ∈ V , u ∈ I and v ∈ I⊥, 〈[v, x, y], u〉 = −〈[x, y, u], v〉 = 0, since

[x, y, u] ∈ I. Therefore [v, x, y] ∈ I⊥.

2. For all u ∈ I⊥, v ∈ I and x, y ∈ V , consider 〈[u, v, x], y〉 = −〈[x, y, v], u〉 = 0 since I

is an ideal, which means that [u, v, x] = 0, whence [I, I⊥, V ] = 0.

3. Let J ⊃ I⊥ be an ideal. Taking perpendiculars, J⊥ ⊂ I. Since I is minimal, J⊥ = 0

or J⊥ = I, whence J = V or J = I⊥ and I⊥ is maximal.

Remark 1. Although we have been assuming that the inner product is nondegenerate, let

us make a remark concerning the possibility of a degenerate inner product. Let V ⊥ denote

the radical of the inner product; that is x ∈ V ⊥ if 〈x, y〉 = 0 for all y ∈ V . It follows

immediately by invariance of the inner product that V ⊥
⊳V is an ideal. This means that if

F is the 4-form in (2.7), then F (x,−,−,−) = 0 for all x ∈ V ⊥. In other words, the 4-form

is the pull-back of the 4-form on the quotient metric Lie 3-algebra V/V ⊥. This means that

the degrees of freedom corresponding to V ⊥ seem to effectively decouple, yielding a Bagger-

Lambert Lagrangian with Lie 3-algebra V/V ⊥. Of course, the symmetry transformations

themselves (that do not involve the metric) will generally mix up the degrees of freedom

on V/V ⊥ and V ⊥, though clearly the truncation to V/V ⊥ is consistent.

2.3 Structure of metric Lie 3-algebras

We now investigate the structure of metric Lie 3-algebras. As in the case of Lie algebras [39 –

41], there is a subtle interplay between ideals and the inner product.

If a Lie 3-algebra is not simple or one-dimensional, then it has a proper ideal and hence

a minimal ideal. Let I ⊳ V be a minimal ideal of a metric Lie 3-algebra. Then I ∩ I⊥,

being an ideal contained in I, is either 0 or I. In other words, minimal ideals are either

nondegenerate or isotropic. If nondegenerate, V = I ⊕ I⊥ is decomposable. Therefore

if V is indecomposable, I is isotropic. Moreover, by Proposition 1 (2), I is abelian and

furthermore, because I is isotropic, [I, I, V ] = 0.

It follows that if V is euclidean and indecomposable, it is either one-dimensional or

simple, whence of the form (2.8) with all λi positive. As we will see below, one can choose

an orthogonal (but not orthonormal) basis for V where the λi are equal to 1. This result,

originally due to [34], was conjectured in [37], both of which also treat the case of Lie

n-algebras for n > 3. This result has been rediscovered more recently for Lie 3-algebras
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in [19, 20] and for n > 3 in [21]. Here it is seen to follow structurally as a corollary of

Theorem 1. The result for n > 3 also follows structurally from the n > 3 version of that

theorem along the same lines.

Let V be an indecomposable metric Lie 3-algebra. Then V is either simple, one-

dimensional, or possesses a proper minimal ideal I which is isotropic and obeys [I, I, V ] = 0.

The perpendicular ideal I⊥ is maximal and hence by Lemma 3, U := V/I⊥ is simple or

one-dimensional, whereas by Lemma 4, W := I⊥/I is a metric Lie 3-algebra.

The inner product on V induces a nondegenerate pairing g : U ⊗ I → R. Indeed,

let [u] = u + I⊥ ∈ U and v ∈ I. Then we define g([u], v) = 〈u, v〉, which is clearly

independent of the coset representative for [u]. In particular, I ∼= U∗ is either one- or

four-dimensional. If the signature of the metric of W is (p, q), that of V is (p + k, q + k)

where k = dim I = dimU . So that if V is to have lorentzian signature, k = 1 and W must

be euclidean; although not necessarily indecomposable.

In the next section we will classify indecomposable lorentzian Lie 3-algebras. The

technique is analogous to the classification of indecomposable metric Lie algebras given

in [39] and its refinement in [40, 41]. The lorentzian Lie algebras have been classified

in [42] (see also [43, 2.3]). By the same techniques it is possible [44] to classify metric Lie

3-algebras with signature (2, ∗) and to prove a structure theorem for the case of general

signature. Similarly it is possible to classify lorentzian Lie n-algebras for n > 3 [45].

3. Lorentzian Lie 3-algebras

A lorentzian Lie 3-algebra decomposes into one lorentzian indecomposable factor and zero

or more indecomposable euclidean factors. As discussed above, the indecomposable eu-

clidean Lie 3-algebras are either one-dimensional or simple. On the other hand, an inde-

composable lorentzian Lie 3-algebra is either one-dimensional, simple or else possesses a

one-dimensional isotropic minimal ideal. It is this latter case which remains to be treated

and we do so now.

The quotient Lie 3-algebra U = V/I⊥ is also one-dimensional. Let u ∈ V be such that

u 6∈ I⊥, whence its image in U generates it. Because I ∼= U∗, there is v ∈ I such that

〈u, v〉 = 1. Complete it to a basis (v, xa) for I⊥. Then (u, v, xa) is a basis for V , with (xa)

spanning a subspace isomorphic to W = I⊥/I and which, with a slight abuse of notation,

we will also denote W . It is possible to choose u so that 〈u, u〉 = 0 and such that 〈u, x〉 = 0

for all x ∈ W . Indeed, given any u, the map x 7→ 〈u, x〉 defines an element in the dual

W ∗. Since the restriction of the inner product to W is nondegenerate, there is some z ∈W

such that 〈u, x〉 = 〈z, x〉 for all x ∈ W . We let u′ = u− z. This still obeys 〈u′, v〉 = 1 and

now also 〈u′, x〉 = 0 for all x ∈ W . Finally let u′′ = u′ − 1
2 〈u

′, u′〉 v, which still satisfies

〈u′′, v〉 = 1, 〈u′′, x〉 = 0 for all x ∈W , but now satisfies 〈u′′, u′′〉 = 0 as well.

In this basis, there are four kinds of 3-brackets: [u, v, x], [u, x, y], [v, x, y] and [x, y, z]

where x, y, z ∈ W . From Proposition 1 (2), it is immediate that [u, v, x] = 0 = [v, x, y],

whence v is central. In summary, the only nonzero 3-brackets are, using the summation

convention,

[u, xa, xb] = fab
cxc and [xa, xb, xc] = −fabcv + φabc

dxd , (3.1)
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where fabc = 〈[u, xa, xb], xc〉. (Notice that an additional ωabv term that might have occurred

on the right hand side of the first 3-bracket must vanish by taking the inner product with

u.) The 3-Jacobi identity is equivalent to the following two conditions:

1. [xa, xb] := fab
cxc defines a Lie algebra structure on W , which leaves the inner product

invariant due to the skewsymmetry of fabc = 〈[xa, xb], xc〉; and

2. [xa, xb, xc]W := φabc
dxd defines a euclidean Lie 3-algebra structure on W which is

ad-invariant with respect to the Lie algebra structure.

We will show below that for V indecomposable, φ ≡ 0 so that the Lie 3-algebra

structure on W is abelian, but not before discussing a family of Lie algebras associated to

every Lie 3-algebra.

3.1 A family of metric Lie algebras

Let (V,Φ) be a Lie 3-algebra. It was already observed in [36] that every z ∈ V defines a

bracket [−,−]z : Λ2V → V by

[x, y]z := [x, y, z] , (3.2)

which obeys the Jacobi identity as a consequence of the 3-Jacobi identity (2.3). Thus

[−,−]z defines on V a Lie algebra structure for which z is a central element. In other

words, a Lie 3-algebra V defines a family of Lie algebras on V parametrised linearly by

V itself. Letting LV ⊂ Λ2V ∗ ⊗ V denote the space of Lie algebra structures on V , a Lie

3-algebra structure on V defines a linear embedding V →֒ Λ2V ∗ ⊗ V whose image lies

in LV . Although it would be tempting to characterise Lie 3-algebras in this way, it is

known [46, 47] however that this condition is strictly weaker than the 3-Jacobi identity. It

is not known whether this is still the case for metric Lie 3-algebras.

If (V,Φ, b) is a metric Lie 3-algebra, then each of the Lie algebras (V, [−,−]z , b) is a

metric Lie algebra. Let V be a simple euclidean Lie 3-algebra. It is possible to change to

a basis (e1, . . . ,e4) where the 3-bracket is

[ei,ej ,ek] = εijkℓeℓ , (3.3)

using the summation convention. Moreover, such a basis is orthogonal, but not necessarily

orthonormal. Thus there is a one parameter family of such metric Lie 3-algebras, distin-

guished by the scale of the inner product. We will denote the simple Lie 3-algebra with the

above 3-brackets by s. Fixing any nonzero x ∈ s, the Lie algebra [−,−]x is isomorphic to

so(3) ⊕ R, where the so(3) is the orthogonal Lie algebra in the perpendicular complement

of the line containing x. Under the adjoint action of this Lie algebra, the vector space s

decomposes into s = Rx⊕ x⊥.

3.2 Indecomposable lorentzian Lie 3-algebras

We are now ready to classify the indecomposable lorentzian Lie 3-algebras. We have

previously shown that such an algebra is given in a basis (u, v, xa) by the 3-bracket in (3.1).

We will now show that if V is indecomposable, then φ necessarily vanishes.
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The tensor φabc
d defines a euclidean Lie 3-algebra structure on W . The most general

euclidean Lie 3-algebra is an orthogonal direct sum W = a ⊕ s1 ⊕ · · · ⊕ sm, where a is an

n-dimensional abelian Lie 3-algebra and the si are m copies of the simple Lie 3-algebra

with 3-brackets given by (3.3). The inner product is such that the above direct sums are

orthogonal, and the inner products on each of the factors is positive-definite.

The Lie algebra structure on W is such that its adjoint representation preserves both

the 3-brackets and the inner product, whence adW is contained in so(a) ⊕ so(s1) ⊕ · · · ⊕

so(sm). Indeed, for any x ∈W , adx preserves the Lie 3-bracket, whence also the “volume”

forms on each of the simple factors. In turn this means that adx preserves the subspaces s

themselves. To see this, let (e1,e2,e3,e4) be a basis for one of the simple factors, say s1,

and let e1 ∧ e2 ∧ e3 ∧ e4 be the corresponding volume form. Invariance under adx means

[x,e1]∧e2 ∧e3∧e4 +e1 ∧ [x,e2]∧e3 ∧e4 +e1 ∧e2 ∧ [x,e3]∧e4 +e1 ∧e2 ∧e3 ∧ [x,e4] = 0 .

Now by invariance of the inner product, [x,ei] ⊥ ei, whence we may write it as [x,ei] =

yi + zi, where yi ∈ s1 ∩ e
⊥
i and zi ∈ s⊥1 . Back into the above equation,

z1 ∧ e2 ∧ e3 ∧ e4 + e1 ∧ z2 ∧ e3 ∧ e4 + e1 ∧ e2 ∧ z3 ∧ e4 + e1 ∧ e2 ∧ e3 ∧ z4 = 0 .

Each of the above four terms is linearly independent, whence zi = 0 and adx indeed pre-

serves s1. This means that each simple factor is a submodule of the adjoint representation

and, hence that so is their direct sum. Finally, by invariance of the inner product, so is

its perpendicular complement a. In other words, the adjoint representation is contained in

so(a) ⊕ so(s1) ⊕ · · · ⊕ so(sm).

This decomposition of the adjoint representation now implies a decomposition of the

Lie algebra itself as W = g ⊕ h1 ⊕ · · · ⊕ hm, where g is an n-dimensional euclidean Lie

algebra (i.e., with ad g < so(a)) and each hi is a four-dimensional euclidean Lie algebra

(i.e., ad hi < so(s)). Indeed, if x and y belong to different orthogonal summands of the

vector space W , then [x, y] belongs to the same summand as y when understood as adx(y)

and to the same summand as x when understood as ady(x). Since these summands are

orthogonal, [x, y] = 0.

Now euclidean Lie algebras are reductive; that is, a direct sum of a compact semisimple

Lie algebra and an abelian Lie algebra. By inspection there are precisely two isomorphism

classes of four-dimensional euclidean Lie algebras: the abelian 4-dimensional Lie algebra

R4 and so(3) ⊕ R. Hence so(s) has to be isomorphic to one of those.

We will now show that every s summand in W factorises in V , contradicting the

assumption that V is indecomposable.

Consider one such s summand, say s1. The corresponding Lie algebra h1 is either

abelian or isomorphic to so(3)⊕R. If h1 is abelian, so that the structure constants vanish,

then for any x ∈ s1, [u, x, V ] = 0 and [x, y, V ] = 0 for any y ∈ W perpendicular to s1 .

Hence s1 ⊳ V is a nondegenerate ideal, contradicting the indecomposability of V .

If h1
∼= so(3) ⊕ R, its adjoint algebra ad h1 is an so(3) subalgebra of so(s1) ∼= so(4),

which therefore leaves a line ℓ ⊂ s1 invariant. The Lie algebra structure on h1 thus coincides

with that given by the Lie bracket [−,−]x = [x,−,−]W , for some x ∈ ℓ, induced from the

– 11 –



J
H
E
P
0
7
(
2
0
0
8
)
1
1
1

Lie 3-algebra structure on s1. In other words, [u, y, z] = [y, z]x = [x, y, z]W for all y, z ∈W .

This allows us to “twist” s1 into a nondegenerate ideal of V . Indeed, define now

u′ = u− x− 1
2 |x|

2v and y′ = y + 〈y, x〉 v , (3.4)

for all y ∈ s1. Then [u′, y′, z′] = 0 for all y, z ∈ s1, and, using that v is central,

[y′, z′, w′] = [y, z, w] = −〈[y, z], w〉 v + [y, z, w]W

= −〈[x, y, z]W , w〉 v + [y, z, w]W

= 〈[y, z, w]W , x〉 v + [y, z, w]W

= [y, z, w]′W .

Moreover, for every y ∈ s1,

〈
u′, y′

〉
=

〈
u− x− 1

2 |x|
2v, y + 〈x, y〉 v

〉
= 〈x, y〉 〈u, v〉 − 〈x, y〉 = 0 ,

and finally

〈
u′, u′

〉
=

〈
u− x− 1

2 |x|
2v, u− x− 1

2 |x|
2v

〉
= −|x|2 〈u, v〉 + 〈x, x〉 = 0 .

In other words, the subspace of V spanned by the y′ for y ∈ s1 is a nondegenerate ideal of

V , contradicting again the fact that V is indecomposable.

Consequently there can be no s’s in W , whence as a Lie 3-algebra, W is abelian. As

a Lie algebra it is euclidean, whence reductive. However the abelian summand commutes

with u, hence it is central in V , again contradicting the fact that it is indecomposable.

Therefore as a Lie algebra W is compact semisimple.

In summary, we have proved the following

Theorem 2. Let (V,Φ, b) be an indecomposable lorentzian Lie 3-algebra. Then it is either

one-dimensional, simple, or else there is a Witt basis (u, v, xa), with u, v complementary

null directions, such that the nonzero 3-brackets take the form

[u, xa, xb] = fab
cxc and [xa, xb, xc] = −fabcv ,

where [xa, xb] = fab
cxc makes the span of the (xa) into a compact semisimple Lie algebra

and fabc = 〈[xa, xb], xc〉.

These latter Lie 3-algebras have been discovered independently in [23 – 25], albeit in

some cases in a slightly different form. It should be remarked that they provide explicit

counterexamples to the lorentzian conjecture of [37], simply by taking the semisimple Lie

algebra to be anything but a direct product of so(3)’s. Since the main focus in [37] was on

middle-dimensional forms in low dimension, such examples did not arise.

Paraphrasing the theorem, the class of indecomposable lorentzian Lie 3-algebras are in

one-to-one correspondence with the class of euclidean metric semisimple Lie algebras, by

which we mean a compact semisimple Lie algebra and a choice of invariant inner product.

This choice involves a choice of scale for each simple factor.
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A final remark is that the classification of indecomposable lorentzian Lie 3-algebras is

analogous to the classification of indecomposable lorentzian Lie algebras, which as shown

in [42] (see also [43, 2.3]) are either one-dimensional, simple, or obtained as a double exten-

sion [39 – 41] of an abelian euclidean Lie algebra g by a one-dimensional Lie algebra acting

on g via a skew-symmetric endomorphism. In the Lie 3-algebra case, we have an analogous

result, with the action of the endomorphism being replaced by a semisimple Lie algebra.

4. The Bagger-Lambert moduli space

4.1 Basic definitions

The space of (maximally supersymmetric) classical vacua of the Bagger-Lambert theory

associated to a Lie 3-algebra V is defined as follows:

V =
{
φ ∈ Hom(R8, V )

∣
∣[φ(x), φ(y), φ(z)] = 0 ∀x,y,z ∈ R8

}
.

In other words, a linear map φ : R8 → V belongs to V if and only if its image lies in

an abelian subalgebra of V . This assumption guarantees that all the Bagger-Lambert

supersymmetry transformations vanish if one sets the gauge field and fermions to zero and

the scalars equal to the constants φ. If A < V is an abelian subalgebra, then let us define

VA := Hom(R8, A), whence

V =
⋃

A<V
abelian

VA .

If A,B are abelian subalgebras of V with A < B, then VA ⊂ VB, whence we can write V

as a union

V =
⋃

A<V
maximal abelian

VA

of maximal subspaces, in the sense that no two subspaces appearing in the above sum

are contained in one another. We see that V is therefore given by the set union of linear

subspaces in Hom(R8, V ), parametrised by the set of maximal abelian subalgebras of V .

In other words, a maximal abelian subalgebra of V determines a “branch” of the classical

space of vacua. Some of these branches will be gauge-related, hence the need to quotient

by gauge transformations. Since we have chosen a gauge in which the gauge field vanishes,

we are only allowed to quotient by gauge transformations which preserve this choice of

gauge. In particular they are constant, whence they define an (invariant) subgroup of the

automorphisms of the Lie 3-algebra.

We define the automorphism group AutV of the Lie 3-algebra V to be the subgroup

of GL(V ) which preserves the 3-bracket; that is,

AutV = {g ∈ GL(V )|g[x, y, z] = [gx, gy, gz], ∀x, y, z ∈ V } .

Its Lie algebra Der V is the Lie subalgebra of gl(V ) consisting of derivations of the 3-

bracket. Let adV = {adx,y|x, y ∈ V } denote the Lie subalgebra of DerV consisting of

inner derivations. It is the Lie algebra of a normal subgroup AdV ⊳ AutV , which we
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will call the group of inner automorphisms; although we should keep in mind that the

nomenclature is somewhat misleading in the absence of a notion of Lie 3-group. The group

AdV is the closest thing one has to a gauge group in the Bagger-Lambert theory.

AutV , and hence AdV , act on Hom(R8, V ) by ignoring the R8 and acting on V

via the defining representation. In other words, if g ∈ AutV and φ : R8 → V , then

(g ·φ)(x) = gφ(x), for all x ∈ R8. It is clear that if φ ∈ V , then g · φ ∈ V , whence we may

define the (classical) moduli space of the Bagger-Lambert theory associated with V as the

gauge-equivalence classes of vacuum configurations in V , where two vacuum configurations

are gauge-equivalent if they related by the action of AdV .

4.2 Automorphisms

We will now study the automorphisms AutV of the indecomposable lorentzian Lie 3-algebra

V built out of a euclidean semisimple Lie algebra g as described in Theorem 2, paying close

attention to the inner automorphisms AdV .

As seen above, V = Ru ⊕ Rv ⊕ g as a vector space, with inner product given by

extending the inner product on g to V in such a way that u, v are orthogonal to g and obey

〈u, u〉 = 0 = 〈v, v〉 and 〈u, v〉 = 1, and where the nonzero 3-brackets are given by

[u, x, y] = [x, y] and [x, y, z] = −〈[x, y], z〉 v ,

for all x, y, z ∈ g.

Let ϕ ∈ AutV . It follows that ϕ preserves the centre Z⊳V . Indeed, if z ∈ Z, then for

all x, y ∈ V , [ϕ(z), ϕ(x), ϕ(y)] = ϕ[z, x, y] = 0. This means that [ϕ(z), ϕ(V ), ϕ(V )] = 0, but

ϕ(V ) = V since ϕ is vector space isomorphism, whence ϕ(z) ∈ Z. Similarly, ϕ preserves

the derived ideal [V, V, V ]. Indeed, ϕ[V, V, V ] = [ϕ(V ), ϕ(V ), ϕ(V )] = [V, V, V ]. This means

that ϕ must take the following form:

ϕ(v) = αv

ϕ(u) = βu+ γv + t

ϕ(x) = f(x) + 〈w, x〉 v ,

for all x ∈ g and where α, β, γ ∈ R, w, t ∈ g and f : g → g. Invertibility of ϕ forces α, β to

be nonzero and f to be invertible.

We will now determine the most general ϕ preserving the 3-brackets. For all x, y, z ∈ g,

ϕ[x, y, z] = −〈[x, y], z〉ϕ(v) = −α 〈[x, y], z〉 v ,

but also

ϕ[x, y, z] = [ϕ(x), ϕ(y), ϕ(z)] = [f(x), f(y), f(z)] = −〈[f(x), f(y)], f(z)〉 v ,

whence we arrive at

〈[f(x), f(y)], f(z)〉 = α 〈[x, y], z〉 . (4.1)

For all x, y ∈ g,

ϕ[u, x, y] = ϕ[x, y] = f [x, y] + 〈w, [x, y]〉 v ,
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but also

ϕ[u, x, y] = [ϕ(u), ϕ(x), ϕ(y)] = [βu+ t, f(x), f(y)] = β[f(x), f(y)] − 〈t, [f(x), f(y)]〉 v ,

which yields two equations

β[f(x), f(y)] = f [x, y] , (4.2)

and

〈w, [x, y]〉 = −〈t, [f(x), f(y)]〉 . (4.3)

Multiplying equation (4.1) by β (which is nonzero) and using equation (4.2), we arrive at

〈f [x, y], f(z)〉 = αβ 〈[x, y], z〉 ,

since g is semisimple, [g, g] = g, whence this is equivalent to

〈f(x), f(y)〉 = αβ 〈x, y〉 , (4.4)

for all x, y ∈ g. Now we multiply equation (4.3) by β and again use equation (4.2) to obtain

β 〈w, [x, y]〉 = −〈t, f [x, y]〉 = −〈f∗t, [x, y]〉 ,

and again using that [g, g] = g, we see that w = −β−1f∗t, where f∗ is the adjoint of f

relative to the inner product.

Let us define

Autλ g = {f : g → g invertible |λ[f(x), f(y)] = f [x, y]} .

For λ = 1 we have the automorphism group of g. The proof of the following lemma is

routine.

Lemma 6. If f ∈ Autλ g then f−1 ∈ Aut1/λ g. If in addition g ∈ Autµ g then f ◦ g ∈

Autλµ g.

Equation (4.2) says that f ∈ Autβ g. Now if f1, f2 ∈ Autβ g, the lemma says that

f−1
1 ◦ f2 ∈ Aut g, whence any two elements of Autβ g are related by composition with an

automorphism. Now the map x 7→ β−1x is invertible and belongs to Autβ g. Hence the

most general solution to equation (4.2) is given by f(x) = β−1a(x) for some Lie algebra

automorphism a ∈ Aut g. Substituting this into equation (4.4), we find

〈a(x), a(y)〉 = αβ3 〈x, y〉 . (4.5)

Since the inner product is positive definite, this means that αβ3 > 0.

Now decompose g = g1⊕· · ·⊕gN into simple factors. On each of the factors, the inner

product is a (negative) multiple of the Killing form, which is preserved by automorphisms.

Therefore if a ∈ Aut g preserves each of the factors (this is the case, e.g., if no two factors

are isomorphic) then it preserves the inner product and we see that αβ3 = 1. If a does not

preserve the factors, it permutes them as well as acting by automorphisms of each of the

factors. However, sinceN is finite, some power of a will again preserve the factors and hence

some power of αβ3 must be equal to 1, but since αβ3 > 0 we again conclude that αβ3 = 1,

whence equation (4.5) says that a is an isometry. Let us denote by Aut0 g the subgroup of

automorphisms which are also isometries. In summary, we have proved the following
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Proposition 2. Every 3-algebra automorphism ϕ ∈ AutV is given by

ϕ(v) = β−3v

ϕ(u) = βu+ γv + t

ϕ(x) = β−1a(x) − β−2 〈t, a(x)〉 v ,

for all x ∈ g and where β ∈ R×, γ ∈ R, t ∈ g and a ∈ Aut0 g.

Let Aut0 V denote the subgroup of 3-algebra automorphisms of V which also preserve

the inner product. It is easy to determine such automorphisms.

Proposition 3. Every 3-algebra automorphism ϕ ∈ Aut0 V preserving the inner product

is given by

ϕ(v) = v

ϕ(u) = u− 1
2 |t|

2v + t

ϕ(x) = a(x) − 〈t, a(x)〉 v ,

for all x ∈ g and where t ∈ g and a ∈ Aut0 g.

Proof. The condition 〈ϕ(u), ϕ(v)〉 = 1 fixes β = 1. The condition 〈ϕ(u), ϕ(u)〉 = 0 fixes

γ = −1
2 |t|

2. The rest of the conditions are satisfied identically.

The automorphism generated by β (that does not preserve the inner product) can be

identified with the transformation used in [24, 25] to fix the value of the coupling constant

in the Bagger-Lambert theory.

As we will now show, the connected component of Aut0 V consists of the inner auto-

morphisms obtained by exponentiating the inner derivations of the Lie 3-algebra V . Indeed,

the inner derivations are thus given by adu,x = adx, adx,y = [x, y] ⊗ v♭ − v ⊗ [x, y]♭ for all

x, y ∈ g, with ♭ : V → V ∗ denoting the musical isomorphism induced by the inner product;

that is, x♭(y) = 〈x, y〉. Since adx,y only depends on x, y via their Lie bracket, and since

g = [g, g], we see that the image of the adx,y is the abelian subalgebra of gl(V ) given by

gab :=
{

t⊗ v♭ − v ⊗ t♭
∣
∣
∣t ∈ g

}

.

Similarly, the image of the adu,x is the adjoint Lie algebra ad g of g, and it is clear that ad g

acts on gab by restricting the defining representation of gl(g). In other words, the inner

derivations of V span a Lie algebra

adV ∼= gab ⋊ ad g .

As a subalgebra of so(V ), this is contained in the stabiliser of the null vector v, with gab

acting as null rotations and ad g as transverse rotations. Exponentiating adV , we obtain

the group AdV = gab ⋊ AdG, which is an affinisation of the adjoint group. Indeed,

exponentiating ad g we obtain AdG, whereas exponentiating an element of the form t ⊗

v♭ − v ⊗ t♭, we obtain

1 + t⊗ v♭ − v ⊗ t♭ − 1
2 |t|

2v ⊗ v♭ .
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In summary, elements ψ ∈ AdV are parametrised by a ∈ AdG and t ∈ g and act by

ψ(v) = v

ψ(u) = u+ t− 1
2 |t|

2v

ψ(x) = a(x) − 〈t, a(x)〉 v ,

(4.6)

whence AdV is precisely the connected component of the identity of Aut0 V , as claimed.

The Lie algebra DerV of AutV consists of derivations of V . It is isomorphic to the

real Lie algebra with generators D, S, Lx and Tx for x ∈ g, subject to the following nonzero

Lie brackets:

[D,S] = −4S , [D,Tx] = −2Tx , [Lx, Ly] = L[x,y] and [Lx, Ty] = T[x,y] .

If we let a denote the two-dimensional solvable Lie subalgebra spanned by D and S, then

we find that Der V has the following structure

DerV ∼= a ⋉ adV .

4.3 Maximal abelian subalgebras

We now determine the maximal abelian subalgebras of V . Every maximal abelian subal-

gebra contains the centre Z = Rv. Let A < V be a maximal abelian subalgebra. Then the

restriction of the inner product to A is either degenerate or nondegenerate. If degenerate, it

means that there can be no element of A of the form u+ · · · , whereas if it is nondegenerate,

there is such an element, which can be taken to have the form u+ z, for some z ∈ g.

In the nondegenerate case, A = R(u+ z)⊕Rv⊕B, where B ⊂ g is a subspace obeying

[x, y] = 0 for all x, y ∈ B. In other words, B is an abelian Lie subalgebra of g. Since g is

compact, maximal abelian Lie subalgebras coincide with the Cartan subalgebras. Hence

nondegenerate maximal abelian subalgebras of V are of the form A = R(u+ z) ⊕ Rv ⊕ h,

for some z ∈ g and some Cartan subalgebra h < g.

The degenerate case is slightly more involved. Here A = Rv ⊕ p, where p ⊂ g is a

subspace of g on which the three-form Ω(x, y, z) = 〈[x, y], z〉 vanishes identically. We call

such subspaces Ω-isotropic. An equivalent condition for a subspace p to be Ω-isotropic

is that [p, p] ⊂ p⊥, whence the Ω-isotropic Lie subalgebras are necessarily abelian. The

maximal Ω-isotropic subalgebras are therefore the Cartan subalgebras. However there is

no need for p to be a Lie subalgebra: it is A which has to be an abelian (3-)subalgebra

of V and this only requires p to be a subspace. We say that an Ω-isotropic subspace is

maximal, if it is not properly contained in any Ω-isotropic subspace. The following is a

useful characterisation of maximality.

Lemma 7. An Ω-isotropic subspace p ⊂ g is maximal if and only if [p, p] = p⊥.

Proof. Let p ⊂ g be an Ω-isotropic subspace properly contained in another Ω-isotropic

subspace. Then there is some x ∈ p⊥ such that p̂ = p ⊕ Rx is Ω-isotropic. This condition

is equivalent to x ∈ [p, p]⊥ or dually that [p, p] ⊂ x⊥. In other words, [p, p] ( p⊥.
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Type g k dim g dim p rank

AI su(n) so(n) n2 − 1 1
2 (n− 1)(n + 2) n− 1

AII su(2n) sp(n) 4n2 − 1 (n− 1)(2n + 1) n− 1

AIII su(p + q) su(p) ⊕ su(q) ⊕ R (p + q)2 − 1 2pq min(p, q)

BDI so(p+ q) so(p) ⊕ so(q) 1
2(p+ q)(p + q − 1) pq min(p, q)

DIII so(2n) u(n) n(2n− 1) n(n− 1) ⌊n/2⌋

CI sp(n) u(n) n(2n+ 1) n(n+ 1) n

CII sp(p+ q) sp(p) ⊕ sp(q) (p+ q)(2p + 2q + 1) 4pq min(p, q)

EI e6 sp(4) 78 42 6

EII e6 su(6) ⊕ su(2) 78 40 4

EIII e6 so(10) ⊕ so(2) 78 32 2

EIV e6 f4 78 26 2

EV e7 su(8) 133 70 7

EVI e7 so(12) ⊕ su(2) 133 64 4

EVII e7 e6 ⊕ so(2) 133 54 3

EVIII e8 so(16) 248 128 8

EIX e8 e7 ⊕ su(2) 248 112 4

FI f4 sp(3) ⊕ su(2) 52 28 4

FII f4 so(9) 52 16 1

G g2 so(4) 14 8 2

Table 1: Symmetric splits g = k ⊕ p of compact simple Lie algebras

A large class of maximally Ω-isotropic subspaces are in one-to-one correspondence

with the compact riemannian symmetric spaces. Indeed, let k ⊂ g be a Lie subalgebra

and consider p = k⊥. Since k preserves the inner product, p is stable under the adjoint

action of k; that is, [k, p] ⊂ p, whence the split g = k ⊕ p is reductive. The split will be

symmetric, so that [p, p] ⊂ k precisely when p is Ω-isotropic. Indeed, Ω is essentially the

torsion of the canonical connection on G/K and precisely when G/K is a symmetric space,

this connection agrees with the Levi-Civit connection, which is torsionless.

There are two types of compact irreducible riemannian symmetric spaces:

• Type I : G/K where G is a compact simple Lie group and K a subgroup with Lie

algebra k < g such that orthogonal decomposition g = k⊕ p is a symmetric split; and

• Type II : compact simple Lie groups H relative to a bi-invariant metric. This can be

written in terms of a symmetric split, with g = h ⊕ h, with the ad-invariant inner

product on both copies of h being the same, and k = {(x, x)|x ∈ h} the diagonal Lie

subalgebra. Its perpendicular complement is p = {(x,−x)|x ∈ h}. It is easy to see

that [p, p] = k, whence by Lemma 7, p is maximal.

Table 1 lists the type I irreducible riemannian symmetric spaces in terms of their

symmetric splits g = k ⊕ p using the Cartan nomenclature as described in [48]. There are
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some repetitions in the table, which can be eliminated by taking p ≥ q in AIII, BDI and

CII; n ≥ 2 in AI, AII and CI; n ≥ 5 in DIII; p ≥ 2 in AIII; and taking p+ q ≥ 7 in BDI in

addition to p = q = 1.

Proposition 4. The Ω-isotropic subspaces p = k⊥ in table 1 are maximal.

Proof. We observe that the Jacobi identity says that [p, p] is an ideal of k. Now many of

the k in table 1 are simple, whence [p, p], being nonzero, must be all of k and by Lemma 7,

p is maximal. For the remaining entries but one, k = k1 ⊕ k2, with ki a simple or one-

dimensional ideal. Then p, if not maximal, must satisfy [p, p] = ki for some i = 1, 2. Let’s

assume, without loss of generality, that [p, p] = k1. Then 〈[p, p], k2〉 = 0, but this means

that 〈[k2, p], p〉 = 0, whence [k2, p] = 0, since it belongs to p. Since [k1, k2] = 0, k2 would

be an ideal of g, contradicting the fact that g is simple. Therefore [p, p] = k and again by

Lemma 7 it is maximal. Finally, in case AIII, k = su(p) ⊕ su(q) ⊕ R. In the same as when

k is the sum of two ideals, one shows that [p, p]⊥ ∩ k is an ideal of g. Since it cannot be all

of g, simplicity of g says that it must be zero.

We have not been able to construct any maximal Ω-isotropic subspace p ⊂ g which

does not come from a symmetric split, but neither have we been able to prove that they

all arise in this way; although it would be tempting to conjecture that this is the case.

4.4 The moduli spaces

We now quotient by inner automorphisms to arrive at the moduli spaces.

The classical space of vacua has two main branches, corresponding to degenerate and

nondegenerate maximal abelian subalgebras A < V . The degenerate branch splits further

into sub-branches labelled by the different types of maximal Ω-isotropic subspaces, many

of which are given by (not necessarily irreducible) compact symmetric spaces.

4.4.1 Moduli of nondegenerate maximal abelian subalgebras

Let us first consider the branch of the moduli space corresponding to nondegenerate max-

imal abelian subalgebras of V of the form A(h, z) = R(u + z) ⊕ Rv ⊕ h for some z ∈ g

and some Cartan subalgebra h < g. Such maximal abelian subalgebras are parametrised

by Cartan(g) × g, where Cartan(g) is the space of Cartan subalgebras of g, which we can

think of as a submanifold of the grassmannian of rank g-planes in g, isometric to G/H,

where H is the maximal torus of a fixed Cartan subalgebra.

The subgroup AdV < GL(V ) acts on V and hence on the A(h, z). Let ψ = ψ(t, a) ∈

AdV with t ∈ g and a ∈ AdG. Then from (4.6) we see that, for all x ∈ g,

ψ(v) = v

ψ(u+ z) = u+ az + t−
(
〈t, az〉 + 1

2 |t|
2
)
v

ψ(x) = ax− 〈t, ax〉 v .

In other words, ψ maps the subspace A(h, z) to A(ah, az+ t). Now fix a Cartan subalgebra

h0 ⊂ g and let A0 = A(h0, 0). Any other Cartan subalgebra of g can be obtained from h0
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by acting with some a ∈ AdG. The translational component of AdV allows us to shift

z in (h, z) to 0. In other words, given any A(h, z), there is some ψ ∈ AdV such that

A(h, z) = ψA0.

The subset of classical vacua corresponding to such maximal subalgebras is given by

Vnondeg =
⋃

(h,z)∈Cartan(g)×g

Hom(R8, A(h, z))

=
⋃

ψ∈Ad V

Hom(R8, ψA0)

=
⋃

ψ∈Ad V

ψHom(R8, A0) .

In other words, it is the orbit of Hom(R8, A0) under AdV . Quotienting by AdV yields

Mnondeg = Hom(R8, A0)/G0

where G0 is the stabiliser of A0 (and hence of Hom(R8, A0)) in AdV . This quotient

is not trivial because there are elements of AdV which preserve A0 as a subspace, but

not A0 pointwise. Indeed, the stabiliser of A0 in AdV is the same as the stabilizer of

(h0, 0) ∈ Cartan(g)× g. The translations move the origin, hence G0 is a subgroup of AdG.

In fact, it is AdN(H0), where N(H0) is the normaliser (in G) of the maximal torus H0

corresponding to h0. Clearly H0 < N(H0) fixes every point of h0, whence only the Weyl

group W0 := N(H0)/H0 of h0 acts effectively.

In summary, the branch of the moduli space of classical vacua corresponding to non-

degenerate maximal abelian subalgebras of V is given by

Mnondeg = Hom(R8,Rv ⊕ Ru⊕ h0)/W0 ,

where W0 is the Weyl group of h0. We see that dim Mnondeg = 8(2 + rank g). In the next

section we will study the asymptotics of this branch for large rank as g varies among the

compact semisimple Lie algebras.

4.4.2 Moduli of degenerate maximal abelian subalgebras

We now consider the branch of the moduli space corresponding to degenerate maximal

abelian subalgebras of V of the form A(p) = Rv ⊕ p, where p ⊂ g is a subspace obeying

[p, p] = p⊥. In other words, such subalgebras are parametrised by the space IsoΩ(g) of

maximal Ω-isotropic subspaces of g. The adjoint group AdG preserves IsoΩ(g) and decom-

poses it into orbits. Some of these orbits are in one-to-one correspondence with (isometry

classes of) compact riemannian symmetric spaces. The group AdV acts on the A(p) as

follows. Let ψ = ψ(a, t) ∈ AdV with a ∈ AdG and t ∈ g. Then from (4.6) we see that

ψ(v) = v and, for x ∈ g, and ψ(x) = ax− 〈t, ax〉 v, whence ψA(p) = A(ap).

The subset of classical vacua corresponding to the A(p) is given by

Vdeg =
⋃

p∈IsoΩ(g)

Hom(R8, A(p))

=
⋃

[p0]∈IsoΩ(g)/AdG

⋃

ψ∈AdV

Hom(R8, ψA(p0)) ,
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where p0 stands for a representative subspace in the orbit [p0] of AdG on IsoΩ(g). A subset

of orbits consists of isometry classes of compact riemannian symmetric spaces of the form

G/K with p0 = k⊥.

Each orbit [p0] gives rise to a branch of the moduli space obtained by quotienting the

AdV orbit of Hom(R8, A(p0) by AdV . As before, the result is

M[p0] = Hom(R8, A(p0)/(gab ⋊ AdK0) ,

where AdK0 < AdG is the stabiliser of p0.

Every (isometry class of) compact riemannian symmetric space gives rise to one such

M[p0] with dim p0 being the dimension of the symmetric space. Those symmetric spaces

which are products of irreducibles of type AI, BDI (with p = q), CI, EI, EV, EVIII, FI and

G have maximal dimension for a given g: their dimension being 1
2(dim g + rank g). They

are characterised by the property that p contains a Cartan subalgebra of g, or equivalently,

that they are of maximal rank. At the other extreme, symmetric spaces which are products

of spheres, complex and quaternionic projective spaces (i.e., types AIII, BDI and CII, all

with q = 1) have smallest possible dimension compared with the dimension of g. Whereas

in the former class the dimension of the moduli space of vacua grows like the square of the

rank of g, in the latter the dimension of the moduli space grows linearly.

It would be very interesting to find a natural interpretation of these maximal Ω-

isotropic subspaces in M-theory. Whereas the non-degenerate branch seems to capture

the expected vacua of the super Yang-Mills description on a stack of D2-branes (perhaps

with an orientifold plane) lifted to M-theory, the configuration space of M-branes that

might mimic the degenerate branch is less clear to us.

4.5 Asymptotic behaviour

It is expected [1, 2] that for a theory of N coincident M2-branes, the number of physical

degrees of freedom should grow as N3/2 for large N . In the present context, the number N

is the dimension of the moduli space of vacua, whereas the number of degrees of freedom

is the dimension of the Lie 3-algebra V . For the nondegenerate branch we have seen that

whereas dimV = dim g + 2, the dimension of the moduli space of vacua is 8(rank g + 2). It

is therefore natural to ask how (dim g, rank g) are distributed for semisimple Lie algebras.

Table 2 lists the ranks and dimensions of the simple Lie algebras, as well as information

on the Weyl group which may help to interpret the classical vacua in terms of configurations

of M2 branes. This data allows us to write the following partition function for compact

semisimple Lie algebras:

ZSSLA(t, ω) =
∏

n≥1

1

1 − ωntn(n+2)

∏

n≥2

1

1 − ωntn(2n+1)

∏

n≥3

1

1 − ωntn(2n+1)

∏

n≥4

1

1 − ωntn(2n−1)

×
1

1 − ω6t78
1

1 − ω7t133
1

1 − ω8t248
1

1 − ω4t52
1

1 − ω2t14
.

Expanding as a power series in t and ω, we have

ZSSLA(t, ω) = 1 +
∑

d,r≥1

Nd,rt
dωr ,
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Lie algebra Rank Dimension Weyl group W order of W

An n n(n+ 2) Sn+1 (n+ 1)!

Bn n n(2n+ 1) (Z2)
n ⋊ Sn 2nn!

Cn n n(2n+ 1) (Z2)
n ⋊ Sn 2nn!

Dn n n(2n− 1) (Z2)
n−1 ⋊ Sn 2n−1n!

E6 6 78 27345

E7 7 133 210345 7

E8 8 248 21435527

F4 4 52 S3 ⋉ (S4 ⋉ (Z2)
3) 2732

G2 2 14 D6 223

Table 2: The simple Lie algebras

Figure 1: Average rank as a function of dimension for compact semisimple Lie algebras

where Nd,r is the number of d-dimensional compact semisimple Lie algebras of rank r. A

little computer experimentation shows that the ranks are normally distributed around the

mean rank, which grows linearly with dimension. Figure 1 shows a plot of the average rank

as a function of dimension for the 23, 058, 218, 050, 191, 608 compact semisimple Lie algebras

of dimension ≤ 1000, depicted by the blue line. The red line is the graph of r = d2/3.

Despite not being the generic behaviour, it is not difficult to come up with series of

semisimple Lie algebras whose rank and dimension obey d = r3/2. Indeed, the classical

simple Lie algebras of rank n have dimension which goes like n2 for large n. Hence taking

n such algebras yields a sequence of semisimple Lie algebras where d ∼ n3 and r ∼ n2

for large n. Indeed, let gn = s1 ⊕ · · · ⊕ sn where the si are any one of An, Bn, Cn or

Dn and let Vn denote the indecomposable lorentzian Lie 3-algebra constructed out of gn.

The nondegenerate branch of the moduli space of the Bagger-Lambert models associated

to Vn exhibit the desired behaviour between the number of M2-branes (1
8 dim M ) and the
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number of degrees of freedom (dimV ).

For the degenerate branch of the moduli space, the relevant question is how

(dim g,dim p) are distributed. Using table 1 for the Type I irreducible riemannian symmet-

ric spaces and again table 2 for the ones with Type II, and being careful to avoid repetitions

due to low-dimensional isomorphisms, it is possible to write down the following generating

functional for compact riemannian symmetric spaces

ZCRSS(t, ω) = Ztype I(t, ω)Ztype II(t, ω) ,

where

Ztype I(t, ω) =
∏

n≥2

1

1−ω(n−1)(n+2)tn
2−1

∏

n≥2

1

1−ω(n−1)(2n+1)t4n
2−1

∏

p≥q≥1
p≥2

1

1−ω2pqt(p+q)
2−1

×
∏

n≥2

1

1−ω(n−1)(n+2)tn2−1

∏

n≥2

1

1−ωn(n−1)tn(2n+1)

∏

n≥5

1

1−ωn(n−1)tn(2n−1)

×
∏

p≥q≥1
p+q≥7

1

1 − ωpqt(p+q)(p+q−1)/2

∏

p≥q≥1

1

1 − ω4pqt(p+q)(2p+2q+1)

×
1

1−ωt

1

1−ω42t78
1

1−ω40t78
1

1−ω32t78
1

1−ω26t78
1

1−ω70t133
1

1−ω64t133

×
1

1 − ω54t133
1

1 − ω128t248
1

1 − ω112t248
1

1 − ω28t52
1

1 − ω16t52
1

1 − ω8t14

is the partition function corresponding to Type I riemannian symmetric spaces and

Ztype II(t, ω) =
∏

n≥1

1

1 − (ωt2)n(n+2)

∏

n≥2

1

1 − (ωt2)n(2n+1)

∏

n≥3

1

1 − (ωt2)n(2n+1)

×
∏

n≥4

1

1−(ωt2)n(2n−1)

1

1−(ωt2)78
1

1−(ωt2)133
1

1−(ωt2)248
1

1−(ωt2)52
1

1−(ωt2)14

is the corresponding to Type II riemannian symmetric spaces. Expanding as a power series

in t and ω, we have

ZCRSS(t, ω) = 1 +
∑

d,s≥1

Nd,st
sωd ,

where Nd,s is now the number of d-dimensional compact riemannian symmetric spaces with

an s-dimensional group of isometries. Figure 2 shows a plot of the average dimension of a

compact riemannian symmetric space (dim p) as a function of the dimension of its isome-

try group (dim g) for the 378, 683, 913, 003, 348, 073, 310, 000, 493, 022 compact riemannian

symmetric spaces whose isometry group have dimension ≤ 1000, depicted by the blue line.

The red line is the graph of dim p = (dim g)2/3.

Despite the fact that the average behaviour is linear, just as in the case of the non-

degenerate branch of the moduli space, it is easy to cook up models where the behaviour

is of the desired form. Consider the type I symmetric spaces BDI, AIII and CII of rank 1;

that is, those with q = 1. The dimension of the isometry group clearly goes like the square

of the dimension of the symmetric space: dim g = n(n + 1)/2 and dim p = n for BDI;
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Figure 2: Average dim p as a function of dim g, for (g, p⊥) a symmetric split

dim g = n(n+ 1) and dim p = 2n for AIII; and dim g = (n+ 1)(2n+ 3) and dim p = 4n for

CII. Taking a product of n such symmetric spaces, yields dim p ∼ n2 whereas dim g ∼ n3.

In fact, one is not restricted to rank 1 symmetric spaces. Taking p to infinity while keeping

q fixed in the above cases also yields the right asymptotic behaviour.

A concrete series of models which realises this behaviour is to take the (n(n2 −1)+2)-

dimensional lorentzian Lie 3-algebra Vn in Theorem 2 corresponding to the semisimple Lie

algebra

gn = su(n) ⊕ · · · ⊕ su(n)
︸ ︷︷ ︸

n times

,

and a choice of scale for the inner product on each simple factor. The classical moduli

space of the Bagger-Lambert model associated to Vn has (at least) the following branches:

• a nondegenerate branch, where the moduli space becomes

R16 × R8n(n−1)/(Sn)
n ,

which has dimension 8(2 + n(n− 1));

• a number of degenerate branches, associated to the compact riemannian symmetric

spaces with isometry gn; that is, products of the following irreducible factors:

– the type II symmetric space (su(n) ⊕ su(n), su(n)), of dimension n2 − 1;

– the type I symmetric space AI, of dimension 1
2(n− 1)(n + 2);

– if n is even, the type I symmetric space AII, of dimension n2 − 1; and

– the type I symmetric spaces AIII, of dimension 2q(n− q) for 1 ≤ q ≤ n− 1.
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In particular, both the nondegenerate branch and the degenerate branch consisting of n

type I symmetric spaces AIII with q = 1 have the right asymptotic behaviour.

In summary, we believe that the question now is not whether there exist plausible

Bagger-Lambert models with the N3/2 asymptotic behaviour, but how to choose among

the plethora of such models.
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